
Computer Science

Specifying Weak Sets

Jeannette M. Wing David C. Steere

September, 1994
CMU-CS-94-194

19941202 033

Specifying Weak Sets

Jeannette M. Wing David C. Steere

September, 1994
CMU-CS-94-194

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted to the 15th International Conference on
Distributed Computing Systems

Wing is supported in part by the Avionics Lab, Wright Research and Development
Center, Aeronautical Systems Division (AFSC), U. S. Air Force, Wright-Patterson AFB,
OH 45433-6543 under Contract F33615-90-C-1465, ARPA Order No. 7597. Steere is
supported in part by the Advanced Research Projects Agency (Hanscom Air Force Base
under Contract F19628-93-C-0193, ARPA Order No. A700; and the Wright Laboratory,
Aeronautical Systems Center, Air Force Materiel Command, USAF, under grant number
F33615-93-1-1330), IBM Corporation, Digital Equipment Corporation, Intel Corporation,
and Bellcore.

The views and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of Wright Laboratory or the U. S. Government.

Keywords: Search, Distributed Systems, Formal Specification. Specifi-
cation of Iterators, Larch Shared Language, Dynamic Sots

Abstract

We present formal specifications of a new abstraction, weak sets, which can
be used to alleviate high latencies when retrieving data from a wide-area in-
formation system like the World Wide Web. In the presence of failures, con-
currency, and distribution, clients performing queries may observe behavior
that is inconsistent with the stringent semantic requirements of mathemat-
ical sets. For example, an element retrieved and returned to the client may
be subsequently deleted before the query terminates. We chose to specify
formally the behavior of weak sets because we wanted to understand the
varying degrees of inconsistency clients might be willing to tolerate and to
understand the tradeoff between providing strong consistency guarantees
and implementing weak sets efficiently. Our specification assertion language
uses a novel construct that lets us model reachability explicitly; with it,
we can distinguish between the existence of an object and its accessibility.
The specifications were instrumental in understanding the design space, and
we are currently implementing the most permissive of the specifications in

several types of Unix systems.

, iCKSBS&lon lor _

riflS QMM. [?
| LTIC TAB □

Unarm oxm c d*S D
Jmsiif Icatios ,—-

By , ™__—
Piste |.but ioc/ „ ii.: ___

Availability €Kö.®S

f>
1st.

|A?aiI aM/c
Special

1 Motivation for Weak Sets

Suppose you are browsing the World Wide Web (WWW) and want to display
the .face files of all people listed on Carnegie Mellon's home page. Or, suppose
through the on-line library information system (LIS) you want to get a list of
papers by a particular author. Or, suppose you are a tourist in Pittsburgh and
want to look at the on-line menus of all Chinese restaurants before choosing
where to eat for dinner.

Each of these kinds of queries returns a set of objects (.face files, card
catalog entries, menus). What properties should we expect these sets to have?
We claim that some standard properties of mathematical sets are desired, but
others are not. In particular, we expect that:

- Membership of an element is determined at some time between starting the
query and finishing the query. Membership may not necessarily hold before
the query, continuously throughout the run of the query, or even after the
query completes. For example, if the LIS database is not up-to-date, we
would not be surprised if an author's most recent paper is not listed; we
would not go hungry if our restaurant search missed some (but not all)
Chinese restaurants in Pittsburgh.

- Order among elements does not matter. Hence retrieval of elements can be
optimized.

- There are no duplicates. (Though we probably would not be overly annoyed
if there were.)

- Elements in the set change infrequently. A restaurant's menu may change
weekly or seasonally; a .face file, annually; an LIS entry, never.

Because of the nature of the information repositories over which we run these
queries, we would not expect concurrent reads and writes on the repository to
be serializable. In particular, user A may be updating the information repository
concurrently with user B who is reading from it. User B may see partial writes
of A. This non-serializable behavior implies that:

- Two people running the same query at the same time may obtain different
sets of elements.

- Running the same query twice in a row may return different sets of elements.

Thus these sets provide weaker guarantees to the user than traditional set
semantics or traditional distributed databases. However, for the kinds of wide
area systems we consider, clients do not expect strong consistency properties, and
implementations that provide stronger guarantees may prove inefficient. The key
difference, of course, is that unlike transaction-oriented databases (e.g., a bank's
set of accounts), there is no global consistency requirement that must be upheld
across a set of information repositories in the WWW. This paper explores the
design space for variations on the semantics of weak sets.

1.1 Context for This Work

Our original motivation for investigating the semantics of weak sets arose in the
context of distributed file systems. Our target environment is a wide-area file
system on a network of (possibly mobile) workstations. Failures are assumed to
be common, e.g., disconnecting a mobile client from the network while travel-
ing is an induced failure, yet consistency of data may be sacrificed to gain high
performance and high availability. In a distributed file system, files and subdi-
rectories in the same directory may reside on nodes different from each other
and/or from the directory itself.

To reduce the high latency of accessing a group of objects in a distributed
file system, one of us (DCS) as part of a Ph.D. thesis is adding a set abstraction
called dynamic sets to the Unix Application Programmer's Interface. In a typical
file system, the expected behavior of the UNIX-like command Is, for example,
is to list the files in the directory in some order (e.g., alphabetically), thus re-
quiring that all files be accessed before Is returns. In a distributed file system,
satisfying this requirement is prohibitively expensive; in the worst case, because
of failures some files may no longer be accessible and so non-termination is pos-
sible. By removing this requirement, we gain two advantages: (1) We can return
information to the user more quickly by yielding partial information about the
contents of a directory; and (2) we can implement such file system commands
more efficiently by fetching files in parallel, fetching "closer" files first, and fetch-
ing all accessible files despite network failures. The resulting behavior observed
by the user is akin to a set's, where ordering of the items does not matter. Also,
by supporting a set-like abstraction, we can support database-like queries, e.g.,
finding all files that satisfy a given predicate.

1.2 Contributions of Paper

To better understand the semantics of dynamic sets, in particular what proper-
ties the implementor must guarantee to its clients, we decided to more formally
specify their properties. In so doing, we realized that there is a wide range of rea-
sonable semantics, resulting in our variations of weak sets. This paper presents
some of the points in this range. The weakest of the behaviors corresponds ex-
actly to the semantics of dynamic sets that we are implementing.

In our first attempt at writing formal specifications of weak sets we ran up
against two limitations of current formal methods. First, we need to deal more
explicitly with the failure case due to the distributed nature of our context.
In particular, we need to distinguish between the existence of an object, say an
element of a set, and its accessibility; an element may satisfy a query but we may
not be able to reach it because of a failure. Second, membership for weak sets
is determined by invoking an iterator, which incrementally retrieves elements
that satisfy a given query. Little work has addressed the formal specification of
iterators (we discuss related work in Section 4); none that we are aware of is
suitable for a concurrent or distributed environment

In summary the two main contributions of this paper are:

- A design space for the semantics of weak sets in a distributed environment.
We present in Section 3 a set of dimensions for our design space and describe
four of the interesting points in this space.

- A novel specification construct needed to capture the inherent distributed
nature of the application. In a distributed system where node and network
failures are possible, knowing about the existence of an object does not imply
being able to access it. We introduce a reachable function to our assertion
language to help make this distinction.

Secondary contributions of this paper are (1) a way of specifying iterators in
the presence of concurrency and distribution and (2) a more precise semantics
for dynamic sets, a new distributed file system abstraction [15].

Both the notion of weak sets and our specification technique can be applied
to other contexts. A file system is a special kind of persistent object repository
where files are objects and directories are collections. A distributed file system
is a special kind of a wide-area information system, for which clients expect con-
tinuous operation despite faults and transmission delays. So, though originally
motivated to support distributed file systems, weak sets are more generally ab-
stractions useful for both persistent object repositories, e.g., Cricket [14], EOS
[5], Gemstone [10], and Thor [8] (see [1] for others), and wide-area information
systems and their applications, e.g., the World Wide Web (WWW) [2], WAIS [7],
and Gopher[ll]. Using an iterator-like operation to perform search and retrieval
is common in these systems.

1.3 Roadmap

The rest of the paper is structured as follows: Section 2 introduces our spec-
ification notation through the example of a specification of an immutable set,
which includes the elements iterator; it explains special specification constructs
used to accommodate concurrency and distribution in our model of computation.
Section 3 presents the dimensions of our design space and four different points
that would represent a reasonable semantics for weak sets in a distributed en-
vironment. It presents, in particular, the different specifications of the elements
iterator for a set abstraction. The specifications themselves are fairly intuitive,
so those readers either desiring only a cursory understanding of the design space
or familiar with the Larch specification method may choose to skip Section 2.
We close with a discussion of related work and a summary of our contributions.

2 Model of Computation and Specifications

A computation, i.e., program execution, is a sequence of alternating states and
(atomic) transitions starting in some initial state, «TQ:

CO Si U\ ... <Tn_i Sn <T„

Each transition, Si, of a computation sequence is a partial function on states. A
history is the subsequence of states of a computation. States can changeover time
through the invocation of a procedure or iterator; each invocation is atomic. Like
a procedure an iterator is called; but unlike a procedure, it may suspend its state
and later be resumed (invoked again), continuing from its suspended state. We
consider the first call to an iterator as well as each resumption as an invocation
of the iterator. Eventually, like a procedure, an iterator may terminate, returning
normally or exceptionally.

Specifications of an object's operations (procedures and iterators) determine
the legal state transitions in a computation. We adopt the Larch style of specify-
ing procedures, iterators, and types [6, 16]. Figure 1 gives a type specification for
an immutable set, s, that exports the create, add, remove, and size procedures
and the elements iterator. We now explain the specification language in more
detail.

set= type create, add, remove, size, elements

constraint s, = s} % set is immutable

create = proc () returns (t: set)
ensures tp0jt = {} A new(l)

add — proc (s: set, e: elem) returns (t: set)
ensures tpo3t = sprc U {e} A new(!)

remove = proc (e: elem, s: set) returns (t: set)
ensures tpo3t = sprc — {e} A new(()

size = proc (s: set) returns (i: int)
ensures iposi = |spr«|

elements = iter (s: set) yields (e: elem)
remembers yielded : set initially {}
ensures if yieldedprc C sfirst % still more to yield

then yieldedpct — yieldedpr<. = {e)
A yieldedpo,t C Sj,T3t

AcS s/irje — yieldedprr

A suspends
else returns % yieldedprr — i/,r.i no more to yield

Fig. 1. A Specification of an Immutable Set (Ignoring Failures)

2.1 Specification Assertion Language

We use the Larch Shared Language [6] as an assertion language with which
to write the pre- and post-conditions of the specifications of procedures and
iterators. LSL is also used to specify a type's value space for objects. We omit
the details of LSL here since in our examples we use standard set notation
for the functions on sets, e.g., U for set union and - for set difference. The
salient features, which have been introduced elsewhere (e.g., [6]), of the assertion
language are as follows:

- We distinguish between an object and its value. An unsubscripted identifier,
e.g., x, always denotes an object, and a subscripted identifier, e.g., x„, de-
notes its value in a particular state, a. We also need to model objects that.
are collections of other objects. In order to treat a contained object as part
of the value of the containing object, we treat objects as special kinds of
values. In Figure 2, we depict an array object, a, in state <r where a contains
the objects {a,/?,7}; aa[2] = /?.

state o

Fig. 2. An Array Object that Contains Three Objects

For example, in the specification of a procedure, P, we use the subscripts pre
and post to distinguish between the value of an object in the state in which
P is called (the "pre-state") and its value in the state in which P returns
(the "post-state"). For an iterator, /, pre and post distinguish between the
pre- and post-states for each invocation (i.e., the initial call and subsequent
resumptions); we additionally use the subscript first to denote the state in
which the iterator is first called and last for the state when the iterator
terminates.1

1 For the first invocation of an iterator, the "first-state" and first "pre-state" are the
same: similarly, for the last invocation the "last-state" and last "post-state" are the
same.

- We assume a special object in the state called terminates whose value ranges
over normal and exceptional termination conditions. We write returns to
stand for the assertion that the operation terminates normally. We write
suspends in iterator specifications to stand for the assertion that the itera-
tor has yielded control back to the caller normally (but the iterator has not
yet terminated).

- The assertion new(x) says that x is an object in the domain of the post-state
that was not in the domain of the pre-state.

In the specification of create in Figure 1, tpo,t stands for the value of the
newly created object t returned as a result of invoking create. The value is the
empty set, {}.

We need to add two new constructs to our assertion language to deal specif-
ically with the distributed nature of our application. We assume a model of a
distributed system that is a set of connected nodes, not necessarily strongly con-
nected. Processes (e.g., clients and servers) communicate via remote procedure
calls. Thus the execution of an operation by a client at one node might actually
involve a remote call to the operation exported by a server at a different node.
Nodes may crash and communication links may fail. These failures may lead to
network partitions, which implies that a process at one node may not be able
to access objects residing at a node in a different partition. We assume we can
detect failures, e.g., those signaled from the lower network and transport layers
of the communication substrate. We write fails to stand for the assertion that
an operation terminates with a special "failure" exception, denoting any kind of
failure, e.g., a timeout, node crash, or link down, due to the distributed nature
of the system.

The possibility of a network partition means that a caller may not be aide to
access a remote object. The caller will be able to detect this situation because
the "failure" exception will be signaled. The unfortunate situation is when an
accessible object (like a collection) contains ("points to") other objects where
the collection object may be accessible, but one or more of the contained objects
may not be. For a collection object, x, we will assume a function reachable^-,,)
which determines the set of objects contained in x that are accessible in state a.
For example, in Figure 2, reachable^) = {a,ß, 7}. If« is on node N and a.
ß, and 7 are on nodes A, B, and C, respectively, and there is a partition between
N and C in state p then reachable(ap) = {a,ß}.

2.2 Specification of Procedures, Iterators, and Typos

In the specification of a procedure, P, the predicate in the requires clause is
P's pre-condition. An omitted requires clause stands for the trivial predicate
"true." The modifies clause is shorthand for a predicate that asserts that all
objects not listed do not change in value: hence the value of an object listed
explicitly in a modifies clause is allowed to change (but does not have to)
as a result of calling P. An omitted modifies clause means no object may be
mutated. The conjunction of the predicate denoted by the modifies clause and

the predicate in the ensures clause is the specification of P's post-condition.
In Figure 1, all the operations have the trivial pre-condition; none modify their
arguments.

The specification of an iterator, /, is similar to that for a procedure except
the interpretation is slightly different since its behavior is slightly different. The
pre-condition must hold each time the iterator is invoked. The post-condition
holds each time the iterator yields and/or terminates. In the elements iterator
in Figure 1, each time the iterator is invoked an element not already yielded is
returned to its caller; this process continues until all elements in the original set
(s/irst) have been yielded.

For convenience, we use history objects (like history variables [12]) in the
specification of iterators to help keep track of history information. These are
local to the iterator and not accessible to its clients.2 The clause

remembers x : T initially init

introduces the history object x of type T with an initial value init. We require
that for any history object, x, for an iterator 7, that in any state, first, in which
/ is first called, xjirst = init. In the specification of elements in Figure 1, the
yielded set is a history object that keeps track of the elements already yielded;
it starts out empty.

A type specification is a set of specifications of the procedures and iterators
exported by the type. In the presence of concurrent processes, if two or more
processes can access a shared, mutable object, then the effect of one may violate
a property assumed by another. To capture what properties all processes must
agree to uphold, we use a constraint clause in the specification for type T. The
predicate we write in this clause states a history property of all computations
involving any object of type T. (We borrow this idea from Liskov and Wing's
technique for specifying subtypes [9].) A history property must hold of all succes-
sive pairs of states in a computation, and thus we formulate them as predicates
over pairs of states. More formally, the constraint clause that appears in the
specification of type T, constraint P(xi,Xj), stands for the predicate, for all
computations, (To Si a\ ... an-i Sn &n,

Vi:T Vl<i<n,l<j<n.i<j=> P(xai,xaj).

Notice that we do not require that <r;- be an immediate successor of <r,- in the
computation.

We capture the immutability property of sets in Figure 1 in the constraint
clause. It requires that a set does not change in value, even in between invoca-
tions.
2 For brevity in our specifications, we omit them from the modifies clause; their values

do not change unless otherwise explicitly specified.

3 Exploring the Design Space

Sets are unordered collections of elements with no duplicates. A set is denned
by the members it contains; hence membership of a element in a set is the key
determining factor of what the set's value is. The operation in our set interface
that defines membership is the elements iterator, so this section presents only
the specification of this iterator; the differences in its specifications determine
the differences in the semantics of weak sets.

The cases we need to consider are as follows:

- The collection over which we are iterating may or may not be.mutated.
• If the collection can mutate, then the interesting cases are whether it

can only grow, only shrink, or both grow and shrink.
- The items in the collection may or may not be mutated.
- If mutations are allowed, then either the iterator or some other process (like

the caller) may cause them.
- In a distributed environment where we need to accommodate failures, wo

need to determine what the iterator's behavior should be if it cannot access
all objects in the collection.

This last dimension is worth further elaboration. Communication failures
have two effects. First, they could prevent an object that is known to be a
member of the collection from being accessed. In the specifications that follow,
we use the reachable function to help us determine the accessibility of objects
in a given state. Second, they could prevent an iterator from seeing mutations
to the collection. This second effect is subtle since it implies that the collection
object itself may be distributed; logically there is a single object, but physically
different parts of it may be scattered across many nodes, or the single "logical"
object may be represented by a set of replicas. Whenever there is such distributed
state, there is always the possibility of inconsistent data. One node may have
more up-to-date information than another; cached data may be stale.

There are two main ways of handling the problem of effects from commu-
nication failures[3]: pessimistically and optimistically. The pessimistic approach
assumes that if a failure occurs, an update might have been missed (e.g., in the
absence of a quorum), and any data available might be stale. Thus, it would
be most appropriate to return a failure. The optimistic approach assumes the
reverse is true, and allows access to the data even though it may be stale. The
appropriate choice depends on the number of failures, and the tradeoff between
high availability and consistency of the data. Thus, in our design space, along
the dimension of dealing with failures, we will consider two cases: pessimistic,
where if a failure is detected then the iterator should immediately terminate, and
optimistic, where the iterator tries to make progress with the expectation that
in a later invocation inaccessible objects will become accessible again (because
the failure has been repaired by that time).

In this section, we give four of the more interesting points in our design space:

- An immutable set where failures may arise. (Figure 1 of the previous section
gave an example of an iterator for an immutable set where failures were
ignored.)

- A mutable set that can grow and shrink, but where mutations done after
some point in time are not seen by the iterator.

- A mutable set- that only grows. It handles failures pessimistically.
- A mutable set that can grow and shrink. It handles failures optimistically.

Two dimensions we will not discuss in this section are who is responsible for
mutations and what may be mutated. For a concurrent or distributed system it
is reasonable to assume that the iterator does not mutate the set (it might keep
a cached version, which is a way to implement a history object), but that any
other process might. And, to keep things simple, we will assume that items in
the set do not change; we could model this by the deletion of an old item from
the set followed by the addition of a new item.

A choice of one behavior over another has serious implications for the im-
plementor. The more restrictive the specification, the harder it is to implement
efficiently in a distributed system. For instance, preventing mutation requires
distributed locking; allowing only growth requires the ability either to prevent
certain mutations or to cache the entire set. Although this functionality may be
mandatory for some high-integrity systems (e.g., a bank's distributed database),
it may too constraining for low-integrity systems, especially loosely-coupled ones
(e.g., WWW).

3.1 Immutable Set with Failures

constraint Si = SJ

elements= iter(s: set) yields (e: elem) signals (failure)
remembers yielded : set initially {}

ensures if yieldedpre C reachable(s/;r.st)
then yieldedpct — yieldedpre = {e}

A yieldedpost Q s/irst
A e € reachable(s/ir3t)
A suspends

else if yieldedpre = reachable(s/irst) A yieldedpTe C Sf,T$t
then fails
else returns % yieldedprc = sjwst

Fig. 3. Immutable Set with Failures

The first specification (Figure 3) describes an iterator for an immutable set.

As before, the constraint clause asserts the immutability property. The yielded
set starts out empty and at each invocation it grows by one element unless a
failure is detected. The ensures clause handles three cases: In the normal case
of suspending the iterator, if there are still elements to yield (the set of elements
already yielded is a strict subset of the set of reachable elements of the original
set, s), then yielded grows by an element of s that is not already in yielded. A
failure occurs if everything reachable has been yielded and the reachable set of
elements is a subset of the original set. Finally, if all elements of the original set
have been yielded, we can terminate the iterator.

Because the set is immutable, we can use the value of s in any state between
the first-state and last-state. Our use here of s/,rj« allows us to make a sharp
distinction between this specification and the one in the next section.

A less stringent specification would allow mutations to occur to the set when
no one is iterating over it, but prohibit mutations during iteration. We could
relax the constraint to be:

constraint V i < k < j . (terminatesi ^ suspend A terminatesj ^ suspend
A terminatesk = suspend) => (s, = sjt = Sj)

which captures the property that between the first-state and last-state of the
iterator, the set does not change. Thus mutations may occur between different
uses of the iterator, but not between invocations of any one use.

Choosing this behavior, or even the less stringent one, has serious perfor-
mance implications since typical implementations would use locks to synchro-
nize access to the set and its elements. Iterating over a large, geographically
dispersed set of objects is time consuming, especially if a human is responsible
for flow control. The use of mobile (and possibly) disconnected computers may
extend the period a lock is held indefinitely, thereby making it unacceptable to
place such tight restrictions on the system. However, in a environment in which
mutation and failures are rare, and the desire for data integrity is high, this
behavior is an appropriate choice.

3.2 Mutable Set with Loss of Mutations

The only visual difference between the specification in Figure 4 and the previous
one in Figure 3 is the change in the constraint clause. Here, the predicate is
"true"; the set may change arbitrarily over time.

The semantic difference is much greater, however. The iterator will yield only
those elements of s as it appears the first time the iterator is called. Since in
between subsequent invocations the set may change, the iterator may miss el-
ements added to s after the first invocation and/or have yielded elements that,
have been removed. Thus, it "loses" mutations between the first-state and last-
state. If clients were concerned about these possible losses, after the iterator
terminates (returns), they can run the iterator again and hope to catch dis-
crepancies. The failure case is handled as in the previous specification, based on
the value of s in the first-state.

constraint true

elements= iter(s: set) yields (e: elem) signals (failure)
remembers yielded : set initially {}

ensures if yieldedpre C reachable(a/ir3t)
then yieldedpct — yieldedpre = {e}

A yieldedpoat Q sjirst
A e € reachable(s/irst)
A suspends

else if yieldedpre = reachable(s/;rat) A yieldedpr<- C s/.Vst
then fails
else returns % yieldedpre = 3first

Fig. 4. Mutable Set, Loss of Some Mutations

The implementation implications are not nearly as severe as in the immutable
set case. This specification relaxes the need for locking since mutations are al-
lowed to s after the initial invocation of the iterator. However, it still assumes
that the set can be obtained in one atomic action (to get a snapshot of s in the
first-state), and distributed atomic actions are extremely expensive in practice.
Thus, this model is appropriate in environments in which failure is rare, and the
consistency of the set is important. Note that for neither this nor the previous
specification did we need to worry about failures masking mutations to s.

3.3 Growing-only Set, Pessimistic

The specification in Figure 5 allows the set only to grow and takes a pessimistic
approach to consistency in the presence of failures.

The constraint clause asserts that the set may only grow. Unlike in the
previous two specifications, each invocation uses the current state of s, i.e., the
pre-state, not first-state. If there are still elements to yield based on the remem-
bered set and the current state of the set, then we choose a reachable one and
yield it. If there are no more elements to yield, we terminate. Otherwise, because
we cannot reach an element that we know is in the set, we fail. Alternatively,
one could easily specify the iterator to use a quorum or token-based scheme by
changing the last line.

Notice that since the set may grow faster than the iterator yields elements
from it, an iterator satisfying this specification may never terminate. Though
the iterator could yield elements ad infinitum, in practice this behavior will not
occur if objects are consumed more rapidly than they are produced.

Just as for the specification for the immutable set with failures (Figure 3),
we could modify the constraint clause to permit arbitrary mutations between

constraint Si C s}

elements= iter(s: set) yields (e: elem) signals (failure)
remembers yielded : set initially {}

ensures if yieldedprc C reachable(spr<!)
then yieldedp03t — yieldedprc = {e}

A yieldedpost Q Spre
A e € reachable(3prc)
A suspends

else if yieldedVrc = spTe
then returns
else fails

Fig. 5. Growing-Only Set, Pessimistic Failure Handling

different runs of the iterator and growth only between invocations of any one
run. Implementing this less stringent behavior is not difficult. To ensure that sets
only grow during the iterator's use of the set, we can prevent objects from being
deleted until the iterator terminates. Alternatively, we can create copies of any
deleted objects and then garbage collect these "ghost" copies upon termination.

3.4 Growing and Shrinking Set, Optimistic

The behavior of elements captured in our last specification (Figure 6) is the
weakest of the four presented in this paper. There are no restrictions on mutation,
there is only a weak guarantee about what is yielded, and it takes an optimistic
approach to consistency.

As in the specification for the mutable set with losses (Figure 4), we allow
the set to grow and shrink in between invocations. Here, however, we will not
miss any additions since the yielded element is based on the current state of the
set, not the state at the first invocation. However, we may still miss deletions,
which means we may yield elements that are subsequently deleted.

We might specify that the yielded set will be a subset of the value of the
set at some state between the first-state and the last-state, i.e., yicldediu.,t C .s,
for some i between first and last. However, in the presence of deletions this may
not be the case. An alternative would be to specify that yicldedlasl D s, for
some i between first and last. However, this is not strong enough because this
allows yieldedia,t to have elements that were never in st. The specification we
give requires that any element yielded must actually be in the set, for some state
of the set between the first-state and last-state.

Orthogonal to handling mutations is handling failures. This specification
takes an optimistic approach since it may never return if a failure is detected.

constraint true

elements= iter(s: set) yields (e: elem)
remembers yielded : set initially {}

ensures if 3e € spre ■ e jtyieldedprs

then yieldedpost — yieldedpre = {e}
A e € reachable(spre)
A suspends

else returns

Fig. 6. Growing and Shrinking Set, Optimistic Failure Handling

The post-condition captures this blocking behavior by testing for the existence
of some element of spre (Be € spre...) not yet yielded, but yielding, of course,
only a reachable element (e G reachable(spre)). We would not block if the
test were for the existence of some element in the reachable set of spre (i.e.,
3e € reachable(spre)...).

The guarantee on what is yielded may seem too weak to be usable, but it is
entirely appropriate for the kinds of systems that we expect to be common in
the future: loose collections of reference objects (e.g., encyclopedias or papers in
archival journals) that are stored across many organizations. As mentioned in the
introduction, several examples of such systems currently exist, and many more
will be built. In these systems, performance and availability are key concerns,
and since reference objects rarely or never change, inconsistent or stale data will
rarely be seen.

4 Related Work

Our analysis was greatly influenced by Garcia-Molina and Wiederhold's [4] tax-
onomy of queries. They use two dimensions for classification, and ignore com-
munication failures. Consistency is the degree to which application constraints
on data can be satisfied while currency is concerned with the version of the data
returned by the query. In our terminology, set membership corresponds to con-
sistency and mutability to currency. The specification in Figure 3 corresponds
to a strong consistency (serializable), ajir,t-vintage query; the one in Figure 4,
to weak consistency, <TjiTit-vintage, and the last two specifications are both no
consistency, ajirst-bound. However, as discussed in the introduction, the weak
semantics in Figures 5 and 6 may be most appropriate for modem wide area
systems.

Tangential to the specification method we present here is work related to
specifying iterators, which is the most interesting part of our specifications.

Wing's thesis [16] presents a formal approach to specifying iterators for CLU.
We borrowed the main ideas needed: the distinction between the first and sub-
sequent invocations, the distinction between suspension and termination, and
the utility of history objects. In a similar Larch two-tiered style for specifying
iterators for C [6], the specification of the control abstraction is broken into
the specification of three C functions: one for initializing an iterator, one for
getting the next element, and one for terminating the iterator; the equivalent
of our history objects (specification variables) are defined in the underlying as-
sertion language, LSL. Finally, Reynolds describes the semantics of iterators in
terms of higher-order procedures in the context of the sequential programming
language Algol-W [13]. None of these pieces of work address issues like failure,
concurrency, and distribution because their context is a sequential programming
language.

Also, in all three pieces of work, the researchers advise against allowing mu-
tation to the collection object. The rationale given for LCL is that such behavior
would be inefficient to implement. Ironically, in distributed systems just the op-
posite is true. The implicit motivation given for Algol-W is that the behavior
would be hard to reason about. The wide variation of possible behaviors within
our design space justifies that reasoning about iterators can indeed be tricky.

5 Summary and Status

The main contribution of this paper is a presentation of formal specifications
of some of the more interesting design points for a new abstraction, weak sets.
These sets must operate in a very general context, where concurrency and fail-
ures in a distributed system cannot be ignored. The power of our specification
technique enabled us to clearly see the design alternatives, allowing us to choose
an acceptable design point for our implementation.

We are currently implementing the weakest design, presented in Section '.IA,
on a variety of Unix-like systems (Mach 2.6, 0SF1, Linux). Our decision to
choose this particular alternative was based on the desire to maximize the us-
ability of the system while preserving good performance and ease of implementa-
tion. We expect users will want some minimal guarantee about the relationship
between what history information they have accumulated about a set and its
observable (and reachable) current state. At the same time anything stronger is
unnecessary; users are usually willing to tolerate some inconsistency for a gain in
performance. We hope to prove the performance benefits resulting from the use
of a weak consistency semantics by evaluation of our system when it. is complete.

Acknowledgments

We thank David Garlan and Steve King for their comments on an earlier version of
this paper.

Wing is supported in part by the Avionics Lab, Wright Research anil Development
Center, Aeronautical Systems Division (AFSC), U. S. Air Force, Wright-Patterson

AFB, OH 45433-6543 under Contract F33615-90-C-1465, ARPA Order No. 7597. Steere
is supported in part by the Advanced Research Projects Agency (Hanscom Air Force
Base under Contract F19628-93-C-0193, ARPA Order No. A700; and the Wright Lab-
oratory, Aeronautical Systems Center, Air Force Materiel Command, USAF, under
grant number F33615-93-1-1330), IBM Corporation, Digital Equipment Corporation,
Intel Corporation, and Bellcore.

The views and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies or endorse-
ments, either expressed or implied, of Wright Laboratory or the U. S. Government.

The U. S. Government is authorized to reproduce and distribute reprints for Gov-
ernment purposes notwithstanding any copyright notation thereon. This manuscript
is submitted for publication with the understanding that the U. S. Government is
authorized to reproduce and distribute reprints for Governmental purposes.

References

1. A. Albano and R. Morrison, editors. Persistent Object Systems. Workshops in
Computing. Springer-Verlag, London, 1992. Proc. of the 5th Int'l Workshop on
Persistent Object Systems, San Miniato, Italy.

2. T. Berners-Lee, R Cailliau, J. F. Groff, and B. Pollerman. World wide web: The
information universe. Electronic Networking: Research, Applications, and Policy,
1(2), Spring 1992.

3. S. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in partitioned net-
works. ACM Computing Surveys, 17(3), September 1985.

4. H. Garcia-Molina and G. Wiederhold. Read-only transactions in a distributed
database. ACM Transactions on Database Systems, 7(2), June 1982.

5. O. Gruber, L. Amsaleg, L. Daynes, and P Valduriez. Eos, an environment for
object-based systems. Technical Report 1499, Institut National de Recherche en
Informatique et en Automatique, 1991.

6. J.J. Horning, J.V. Guttag, S.J. Garland, K.D. Jones, A. Modet, and J.M. Wing.
Larch : Languages and Tools for Formal Specification. Springer-Verlag, New York,
1993.

7. B. Kahle and A. Medlar. An information system for corporate users: Wide area
information servers. ConneXions - The Interoperability Report, 5(11), Nov 1991.

8. B. Liskov. Preliminary design of the Thor object-oriented database system. In
Proc. of the Software Technology Conference. DARPA, April 1992.

9. B. Liskov and J. Wing. Specifications and their use in defining subtypes. In Proc.
of OOPSLA '93, pages 16-28, September 1993.

10. David Maier and Jacob Stein. Development and implementation of an object-
oriented DBMS. In S.B. Zdonik and D. Maier, editors, Readings in Object-Oriented
Database Systems, pages 167-185. Morgan Kaufmann, 1990.

11. M. McCahill. The internet gopher: A distributed server information system. Con-
nexions - The Interoperability Report, 6(7), July 1992.

12. S. Owicki. Axiomatic Proof Techniques for Parallel Programs. PhD thesis, Cornell
University, 1975.

13. J. Reynolds. The Craft of Programming. Prentice-Hall International series in
computer science. Prentice/Hall International, Englewood Cliffs, N.J., 1981.

14. E. Shekita and M. Zwilling. Cricket: A mapped, persistent object store. In Proc. of
the 4th International Workshop on Persistent Object Systems, Martha's Vineyard,
MA, 1990.

15. D. Steere and M. Satyanarayanan. A case for dynamic sets in operating systems.
Submitted to SIGOPS Operating System Review., June 1994.

16. J. Wing. A Two-tiered Approach to Specifying Programs. PhD thesis, MIT, Lab.
for Comp. Sei., 1983.

This article was processed using the I^TgX macro package wiih LLNCS style

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to
discriminate in admission, employment or administration of its programs on the basis of race, color,
national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of the
Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal,
state or local laws, or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or adminis-
tration of its programs on the basis of religion, creed, ancestry, belief, age, veteran status, sexual
orientation or in violation of federal, state or local laws, or executive orders.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie
Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone (412) 268-6684 or the Vice
President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213,
telephone (412) 268-2056.

